
Final Revision Windows Component-Based Servicing Overview pivotman319

Page 1 of 17

Windows Component-Based Servicing (CBS):

An In-Depth Overview
Understanding the Intricacies of the Windows Image Building Process

pivotman319

6th June 2024

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 2 of 17

Table of Contents
Introduction.. 3

Preface ... 3

Acknowledgements .. 3

Disclaimer ... 3

Image Building Process .. 4

Post-Build Binary Spew, Windows Foundation and Preparation ... 4

Daily Build Cycle .. 4

Certificate Chains .. 4

Foundation Image Creation .. 5

Resolving Packages ... 7

Feature Packaging ... 8

Pre-Staging .. 9

Staging and Component Installation .. 10

Final Steps ... 11

Language Pack Installation ... 11

Windows Setup Unattended Datafiles ... 11

Language and Region, Image Serviceability State and SetupCl ... 11

Amendments Made Since Windows 7 .. 13

Windows Runtime-specific servicing stack changes .. 13

Windows 10 Language Features on Demand (FoDs) ... 14

Temporary Switch to DISM for Image Servicing ... 14

Conclusion ... 15

Citations .. 16

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 3 of 17

Introduction

Preface

This document aims to thoroughly explain how Microsoft Windows operating system images

are assembled through the component-based servicing stack and also provides preliminary

context on how the assembly of the respective components are prepared beforehand.

Acknowledgements

I would like to thank Scamdisk (nee Mintel), Anri Guramovich (aka Applegame12345), Gustave

Monce (aka gus33000), Arminder Singh (aka amarioguy) and WitherOrNot (of ASDCorp) for

their help in guiding me around CBS internals over the course of two years.

I would also like to especially thank the fine individuals over at the Anomalous Software

Deterioration Corporation (ASDCorp; formerly Gamers Against Weed) for providing the

additional resources and tools I need to help thoroughly cover this subject.

Disclaimer

For this write-up, only desktop-based Windows versions will be covered. I will not be

covering other Microsoft operating systems for the following reasons:

Admittedly, I do not have enough knowledge on how Windows Phone images are built.

Documentation for these operating systems are extremely limited as Microsoft has kept quite

a lot of things under wraps (including subjects which are supposed to be covered by the

Windows Phone Adaptation Kit, but for some reason aren’t), which makes it hard for myself

and others to easily understand how to decipher the way other Windows releases are built. I

do know for a matter of fact that such releases use a completely different staging process

(which use cabinet files containing individual operating system components) and that such

images are instead built with their own custom tooling in place.

These releases happen to be built by using the ImgGen tool, which was first put into play

midway through Windows Phone 8 development; sometime around Windows NT builds 80xx-

814x (from the FBL_CORE1_MOBILE_DEV development branches) is where I’m hazarding that

they eventually ultimately phased out BootableSku/WinSxS-based WP images. As far as I am

aware, this tool is often still used by Microsoft to assemble WP-like images, such as ModernPC

(WCOSCDG; aka Windows 10X), MobileCore/OneCoreUpdateOS, Windows Holographic

(AnalogOneCore), et cetera.

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 4 of 17

Image Building Process

Post-Build Binary Spew, Windows Foundation and Preparation

Daily Build Cycle

Every day, Microsoft compiles Windows builds in a variety of CPU architectures and build

flavors, which include Free (retail/consumer), Checked (debug) and previously Code Coverage,

which included symbols as part of binaries (if I recall correctly – coverage builds are no longer

being compiled today). These builds additionally target every SKU within the source tree.

For instance, one could have an arm32chk ProfessionalWMC build that targets the French

(France) (fr-FR) localization, or an x86fre ServerDatacenter build that targets the English

(United Kingdom) (en-GB) localization. The way these components are first bundled together

happens during the post-build process, where binaries containing the raw component

structure of what would eventually become a Windows image are placed in an output folder -

more specifically, the Windows component store (WinSxS), which contains the raw,

unorganized set of components that will be used to form a base Windows image. In unstaged

Windows images, this store is simply referred to as just the packages directory.

This process is not exclusive to just one build. It happens across practically every different

development branch that exists within the OS Git source tree. Component manifests (which

may contain vital information such as required registry values, NTFS file permissions, binary

file locations, Base64-encoded SHA-1/SHA-256 file hashes) are first generated during the post-

build process, followed by the update package manifests that contain the required metadata

to install such components and their associated digitally-signed security catalogs, which

contain signatures for binaries defined by said update manifest.

Certificate Chains

Depending on the conditions of the overall build’s compile (such as the residing development

branch and the way it is configured), security catalogs may be signed by the following

certificate authority chains:

• Microsoft Windows Production PCA 2011: production code signing. Since Win7

SP1/mid-Win8 dev;

• Microsoft Windows Production PCA 2023: Ditto. Introduced during early Gallium

(v24H1) development, adopted in Windows 11 2024 Update (v24H2) – first existed

alongside shift to proper certs for Secure Boot code signing (Microsoft UEFI CA 2023)

in response to continued occurrences of original equipment manufacturers losing

private keys used to sign existing EFI firmware;

• Microsoft Windows Verification PCA: production code signing; intended for WHQL

driver verification, but was used in builds from winmain_win8m1 and

winmain_win8m2 development branches;

• Microsoft Windows PCA 2010: pre-release code signing – used in winmain_win8m3

and winmain_win8beta;

• MSIT Test CodeSign CA [#]: test code signing, or;

• Microsoft Development PCA 2014 (flight code signing; since Win10 TH1).

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 5 of 17

o Note: certain branches also used a separate Development PCA certificate that

utilized pre-release code signing in place of flight code signing, e.g.:

rs_prerelease_prs, rs1_release_prs, winmain_prs, et cetera.

o This certificate chain was regenerated during Windows 10 Creators Update

development (in RS_PRERELEASE build 14965) to prevent legitimate customers

from unknowingly installing Insider builds that would be later made unbootable

when booted outside of the intended certificate validity period.

• Microsoft Windows OEM Root 2017: OEM/partner-specific code signing certificate

allowing hardware manufacturers to sign their own custom-built components for

testing purposes only – actively used by Qualcomm. Was refreshed once to push chain

expiration date further into the future.

Foundation Image Creation

The main gist of the whole assembly process boils down to three important factors:

• the Windows Componentization Platform (and the main CBS servicing stack)

• the Windows foundation image, containing the absolute dependencies needed to

build the image, and;

• the aforementioned component and update package manifests (including the raw

component binaries).

Windows foundation images are created by respectively calling C++ functions

CreateNewWindows() and CreateNewOfflineStore() in the servicing stack library

WCP.dll, short for the Windows Componentization Platform:

HRESULT CreateNewWindows(
 DWORD dwFlags,
 LPCWSTR szSystemDrive,
 POFFLINE_STORE_CREATION_PARAMETERS pParameters,
 PVOID *ppvKeys,
 DWORD *pdwDisposition
);

HRESULT CreateNewOfflineStore(
 DWORD dwFlags,
 POFFLINE_STORE_CREATION_PARAMETERS pParameters,
 REFIID riid,
 IUnknown *ppStore,
 DWORD *pdwDisposition
);

Disclaimer: As of Windows 10 Anniversary Update (RS1/v1607). These functions’ variables may have been changed

in later Windows NT versions.

Microsoft uses a tool officially dubbed the Trusted Installer Client Console (CBSS) to build the

Windows image, which would call these functions in a separate tool and then perform the

staging process. The foundation image may be placed inside of a virtual hard disk image that

will contain the actual OS image. Further servicing operations made after initial neutral image

staging process (such as language pack and feature installation) will eventually resort to image

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 6 of 17

servicing operations made through automation by passing commands over to the Deployment

Image Servicing and Management Tool (DISM).

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 7 of 17

Resolving Packages

Package names in the Windows component store are structured under the following format:

PackageName~PublicKeyToken~cpuarch~lang-REGION~1.2.3.4

• | = Package name (e.g.: Microsoft-Windows-StepsRecorder-Package)

• | = Public key token (e.g.: 31bf3856ad364e35) – bound to package/component signer

• | = CPU architecture (e.g.: x86, arm64, mips, ia64)

• | = Language and region type (e.g.: en-US; omitted in neutral packages)

• | = Package version (e.g.: 10.0.10586.1000)

Update package manifests are divided into a subset of packages and deployment manifests

to install into the operating system image:

The operating system image is built by parsing a specific XML file (bearing the .mum file

extension), an example being the "edition"/"product" manifest pictured above. The XML file is

first checked for whether any specific conditions are met, such as the presence of a specific

language pack, a core Windows feature or a Windows update; if there are no conditions

present in the XML file, this step is skipped entirely. The servicing stack then parses the XML

file, loading in any defined update package manifests and component "deployment" manifests

which act as redirectors for the actual system component manifests.

Specific criteria for how feature installation is handled exists within the componentization

platform - the servicing stack checks the value of the releaseType variable is equivalent to

Product (a Windows edition) or Feature Pack; if the value matches the former, then the

servicing stack performs a check to see if more than one Windows edition is being installed at

once, and raises error code CBS_E_MORE_THAN_ONE_ACTIVE_EDITION if these conditions

end up being true. This does not get thrown in cases where one or more editions are staged

at once, but only one edition is actually installed on the operating system image.

The servicing stack attempts to locate such manifests by using a specific naming system that

distinguishes components from another through the derivation of the architecture,

component name, public key token, build number and localization values. This, in turn,

generates a sort of "unique key" that is used by CBS to automatically locate component

manifests, which is appended to the end of the actual component name:

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 8 of 17

amd64_Microsoft-Windows-OS-Kernel-MinWin_31bf3856ad364e35_10.0.17784.1068_none_e10b1ea85233711

• | = CPU architecture

• | = Component name

• | = Public key token

• | = Component version

• | = Language and region

• | = Derived “unique key”; an amalgamation of the five values

A shorter version of the above format, named "Winners", is also used for quickly associating

and pairing components together by omitting the version field:

amd64_Microsoft-Windows-OS-Kernel-MinWin_31bf3856ad364e35_none_d0b24db91fb68e77

• | = CPU architecture

• | = Component name

• | = Public key token

• | = Language and region

• | = Derived “unique key”; an amalgamation of the four values

Feature Packaging

Microsoft may decide to package certain operating system features (such as the Remote Server

Administration Tool (RSAT) or the Windows N edition-specific Media Feature Pack) into LZMS-

compressed cabinet archives. These are often used for Windows updates, separate feature

installation (such as the .NET Framework, the on-demand package of which is also made

available online or built into the Windows installation media in the sources\sxs directory)

or through online feature-on-demand installs initiated by the Optional features Settings

subpage.

Typically, these cabinet files contain the needed subset of components + binaries to install the

package. The main component update manifest is promptly renamed to update.mum to allow

the CBS servicing stack to properly locate and install the respective component, although since

Windows 10 Fall Creators Update, a copy of the update manifest with the original component

name is also included as part of the package itself. Package installation is handled by

decompressing the cabinet file into a separate temporary scratch directory located within the

component store (or manually defined by the user by passing the /ScratchDir parameter

via DISM), and then processing the update manifests using the staging and feature installation

phases described later in the document.

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 9 of 17

Pre-Staging

Pre-staging begins immediately after the Resolve phase, which is the discovery and population

of components that have yet to be installed. Component manifests (including deployment

redirectors) are placed into the Windows\WinSxS\Manifests directory and are additionally

compressed using Windows Update DCM compression (a variation of the LZMS compression

algorithm), packed in the form of a PA30 null-delta update binary (wherever applicable; the

servicing stack specifically excludes certain manifests from being compressed such as

those pertaining to Windows Common Controls to prevent a CRITICAL_PROCESS_DIED

bugcheck from occurring).

The manifests are also placed inside of a central “manifest cache” found in the

Windows\WinSxS\ManifestCache directory to allow the servicing stack to quickly load in

manifests from a single binary rather than needing to perform disk read operations across

multiple files in random order in an effort to optimize the overall image servicing process.

Components are then populated into the Windows image’s registry in both the COMPONENTS

and SOFTWARE registry hives, which were initially automatically generated in the form of empty

registry hives by WCP function CreateNewPseudoWindowsEx() and later populated by the

OfflineStore mechanism. Update manifests and security catalogs are first copied over to

the Windows\servicing\Packages directory; the aforementioned manifests’ security

catalogs (which, as mentioned earlier, are signed with either a SHA-1/SHA-256 certificate chain

depending on the Windows version being dealt) are also placed within the following

directories:

• Windows\System32\CatRoot\{F750E6C3-38EE-11D1-85E5-00C04FC295EE}
• Windows\WinSxS\Catalogs*

*Note: security catalogs in this directory are automatically renamed into their own SHA-256 hashes.

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 10 of 17

Staging and Component Installation
After the pre-staging process is completed, the servicing stack then begins to stage the actual

update packages by parsing the components’ manifest files and copying their associated

binaries over to the root of the Windows component store, located at Windows\WinSxS –

these components usually have an associated directory containing the required binaries which

will later be placed into the final resulting image. The actual components’ binaries (as well the

respective component manifests) are first checked against matching SHA-1/SHA-256 hashes

located within both the manifest itself and within the provided update package manifest’s

security catalog and then copied into their respective locations. If no applicable hash is found

for the respective binaries or component manifest, the servicing stack throws a critical error

and immediately attempts to abort the operation.

After all components have been staged, the servicing stack runs three different types of

installers in order:

• Primitive Installers (initializes basic registry and file permissions, allowing files to be

hard-linked in the soon-to-be resulting Windows image)

• Midground Installers (purposes currently unknown, as of writing)

• Advanced Installers, which pre-configures the resulting neutral image (as defined in

the type directive for each component manifest). Also responsible for staging and

installing drivers in the CBS Driver Store (located within the

Windows\System32\DriverStore directory) using the same mechanisms used to

install drivers via the built-in Windows Device Manager, as invoked by the drvStore

advanced installer.

After the prerequisites have been fulfilled, the servicing stack then begins to hard-link every

binary defined within each component manifest; for instance, the operating system kernel may

not actually exist as Windows\System32\ntoskrnl.exe, but is instead a two-way shortcut

for a singular operating system component which also happens to originate from the SxS store.

Registry values and access control lists (within the operating system’s NTFS partition and inside

the Windows registry) are also applied against the respective resources where applicable.

Individual directories’ file maps are then automatically generated for each hard-linked binary

in the form of a CDF data file and placed inside of the Windows\WinSxS\FileMaps directory.

The servicing stack may attempt to copy a specific component’s binaries in full (and not hard-

linked) over to the Windows\WinSxS\Backup directory, acting as a last-resort fallback for

offline repair operations if it so happens that there exists corruption within the Windows

component store.

At this point, the image can now be declared fully staged; however, there are some implications

which need to be fulfilled before the operating system image can be properly used, which is

covered in the next section.

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 11 of 17

Final Steps

Language Pack Installation

Neutral Windows images lack a language pack by default. In this state, the operating system

cannot boot at all due to missing multilingual user interface binaries (MUIs) and will instead

bugcheck with code MUI_NO_VALID_SYSTEM_LANGUAGE. This bugcheck can also occur due

to product policy restrictions that are ultimately checked against by the Windows kernel. Some

Windows editions or product keys only allow a specific (subset of) language(s) to be installed

into the image; [1] one specific edge case would be the China government-mandated Windows

editions, which primarily include:

• CoreCountrySpecific (Windows Home China)

• ProfessionalCountrySpecific (Windows 10/11 Pro China Only)

• EnterpriseG (Windows 10 Enterprise China Government Edition (CMGE))

• EnterpriseGN (Ditto; N variant)

The user must request the servicing stack to install their desired language pack (which comes

packaged in the form of a cabinet file containing the respective components; these are

essentially installed in the same way as the staging process described above) and configure it

as necessary to ensure that certain aspects of the operating system (such as UI elements and

branding resources) are displayed properly in front of the user. Certain language packs contain

accommodations tailored towards specific regions or countries, such as those originating from

Asia or the Middle East, and may differ visually (such as the font choice or element sizes; the

Dutch language pack, for instance, has its own icon sizing variables, whereas the Korean (South

Korea/Republic of Korea) language pack utilizes its own font for the Windows Aero visual style

named Microsoft YaHei).

Windows Setup Unattended Datafiles

Each Windows edition may come with its own unattended data file, which contain specific

customizations such as crash dump settings, Windows Explorer search configuration, licensing

data or power settings. This data file is copied over to the Windows root operating system

directory and then subsequently applied by DISM and/or Windows Setup through the

OEMDefaultAssociations servicing stack plugin, located in the Windows\System32

directory.

Language and Region, Image Serviceability State and SetupCl

Finally, the user then requests the servicing stack to set the default UI and system language

that will be used across the entire image. The servicing stack attempts to mark the image as

fully serviceable by adjusting the SOFTWARE and SYSTEM hives, flagging the system image

with IMAGE_STATE_GENERALIZE_RESEAL_TO_OOBE in the registry and in

Windows\Setup\State\State.ini (the latter being required in modern-day Windows

releases) and preventing the operating system image from being modified by DISM whenever

the user attempts to invoke DISM /Cleanup-Image /StartComponentCleanup
/ResetBase. The operating system image is also modified to require launching the setupcl

utility with specific servicing operation flags (as defined in the SYSTEM hive) to allow the image

to be properly serviced by the Windows servicing stack during the second phase of the

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 12 of 17

Windows installation process (usually referred to as the hardware detection phase), which

generally involves detecting hardware present on the user’s device and installing applicable

system drivers. Since Windows 8, provisioned AppX applications are also configured by the

servicing stack on both a system- and user-facing level.

The final resulting operating system image is produced, and may then (optionally) be

compressed into a Windows Imaging Format file (.wim) or distributed in the form of a pre-

configured virtual hard disk (.vhd) image.

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 13 of 17

Amendments Made Since Windows 7

Although the overall servicing process has remained largely unchanged since Windows 7,

Microsoft have made a number of underlying operating system changes that further warranted

some minor alterations to the existing component-based servicing stack. These changes are

described below:

Windows Runtime-specific servicing stack changes

Windows 8 introduced the Windows Runtime (WinRT) application model, an unmanaged

application runtime that leverages Component Object Model (COM) API calls in place of older

library imports/exports. Applications based on this model primarily run within an isolated

“sandbox” or within a “silo” (as of Windows 10 RS2) to close out potential security holes – such

applications therefore have their own subset of file, directory and process permissions that are

completely separate from the usual permissions laid down within other areas of the Windows

operating system.

Such an application is usually packaged inside of a Zip64 binary that contains the metadata

and binaries required to install and use it, otherwise known as AppX. To account for these

changes, new APIs for AppX package management (specifically

AppxDeploymentClient/Server, AppxPackaging) were introduced, and the Windows

PowerShell side of the Windows servicing stack was further updated to include a new servicing

provider simply named Appx, which offers functionality for a then-new subset of commandlets

that can install, provision, or obtain a list of AppX application packages – these notably include

Add-AppxPackage, Add-ProvisionedAppxPackage, Remove-AppxPackage, and Get-
AppxPackage.

Staged Windows images usually do not come with any AppX applications by default – the sole

exceptions of course being those that are needed to allow the OS shell to work, which are

marked as “system apps”. These applications cannot be uninstalled at all, as removing them

would ultimately break core operating system functionality such as the web-based out-of-box

experience (Microsoft.Windows.CloudExperienceHost; introduced in Windows 10

TH1), the Start menu (Microsoft.Windows.StartMenuExperienceHost), the Immersive

Control Panel (aka PC settings in Windows 8.x, or just Settings in Windows 10 onward), and/or

the Action Center.

Operating system images can be configured to include or exclude the ordinary subset of inbox

AppX applications; server operating system images are always excluded from these operations.

Since Windows 8.1 client, images are pre-configured to automatically install these applications

by default, although edition-specific exemptions apply.

Windows editions that are manually configured to not install inbox applications include:

• All applicable Windows Server editions, including their Server Core counterparts

(ServerWeb, ServerStandard, ServerDatacenter, ServerHyperCor,

ServerAzureCor, ServerAzureStackHCICor);

• ProfessionalS(N) – Scrapped Windows 10 Pro LTSB servicing release;

• EnterpriseS(N)(Eval) – Windows 10/11 Enterprise LTSC (N) (Evaluation);

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 14 of 17

• EnterpriseG(N) – Windows 10 Enterprise CMGE

Some localization and/or edition combinations also have a pre-defined list of applications that

are excluded from installation. A Windows N edition coupled with an installed Korean

language pack may exclude both media and messaging applications to comply with anti-

trust/fair competition legislation that has since been signed into law.

Windows 10 Language Features on Demand (FoDs)

Since the initial Windows 10 release (Threshold 1/v1507), specific language pack features

(which include text-to-speech, basic natural language selection (NLS) data, optical character

recognition (OCR) and inking/handwriting) have been separated out into their own neutral on-

demand feature packages, and must therefore be installed alongside the language pack to

allow specific system features to work properly. These features include (but are not limited to)

the Windows Ink Workspace (first introduced as part of the Windows 10 Anniversary Update

(Redstone 1/v1607)), the Narrator accessibility tool and the now-defunct Cortana service.

Temporary Switch to DISM for Image Servicing

Microsoft made a temporary change that slightly impacted Windows 8 and early Windows 10

by using the DISM to stage the operating system in place of the earlier Trusted Installer client

console. Evidently, this was reverted for unknown reasons, although it is assumed that the

switch back to CBSS.EXE was likely done due to architectural changes related to feature-on-

demand packages introduced as part of Win10 v1507.

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 15 of 17

Conclusion
Microsoft’s method of building Windows operating system images is rather unconventional,

and can be often compared to how Linux distributions such as Fedora, Ubuntu or Debian are

packaged – Fedora’s example, being that the user is offered a choice to pick what components

they can install via dnf (in the form of grouped packages that play a role in what is essentially

forming a complete “environment”), bears many similarities to the way Windows itself handles

“updates”, as certain individual components (such as the Windows Server WoW64

compatibility layer) are also grouped together in a single handy package. Ubuntu, on the other

hand, offers its own package management system over a command-line interface with options

to directly install and uninstall features on demand via the apt utility.

I hope this document helps adequately explain the basic and advanced fundamental concepts

of how the Windows side-by-side component store works internally. Again, I would like to

reiterate and extend my thanks to the people largely involved in providing me with the

resources needed to aid in the creation of this document as a whole (as described within the

above acknowledgements included in the Introduction section).

Thank you for reading.

-pivotman319

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 16 of 17

Citations
1. awuctl – Licensing Stuff: Product Keys (published on 12th April 2023)

https://github.com/awuctl/licensing-stuff/blob/main/docs/product-keys.md

Final Revision Windows Component-Based Servicing Overview pivotman319

Page 17 of 17

